Qualitative Risk Evaluation Fillmore's Water Recycling and Irrigation Proposal

Fillmore Unified School District

Dr. Karl Rodenbaugh, Senior Scientist The Planning Center 9841 Airport Blvd., Ste 1010 Los Angeles, CA 90045

July 31, 2007

Scope of Services

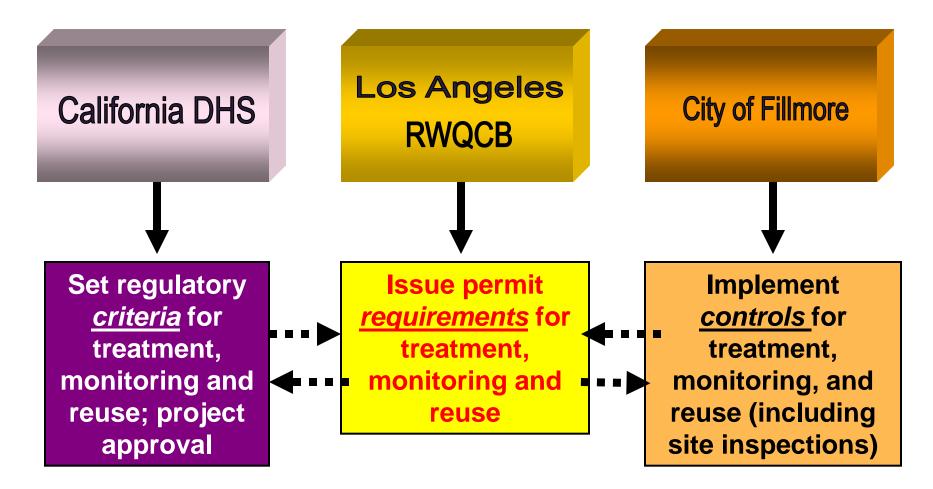
SCOPE:

Review **background information** from the City and the District relating to the SDI proposal.

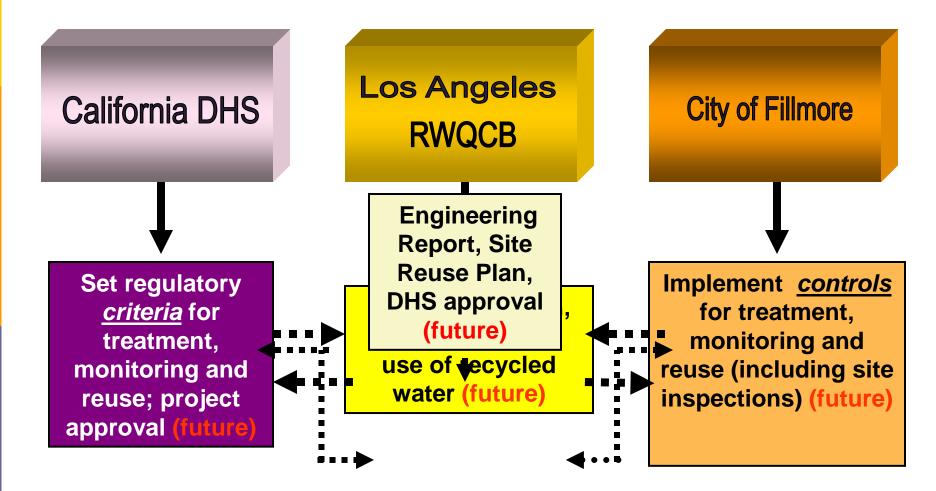
Perform **additional research** (e.g., scientific studies, regulations, permits, other projects, etc.)

Interview representatives from regulatory agencies, City, and project engineering firm.

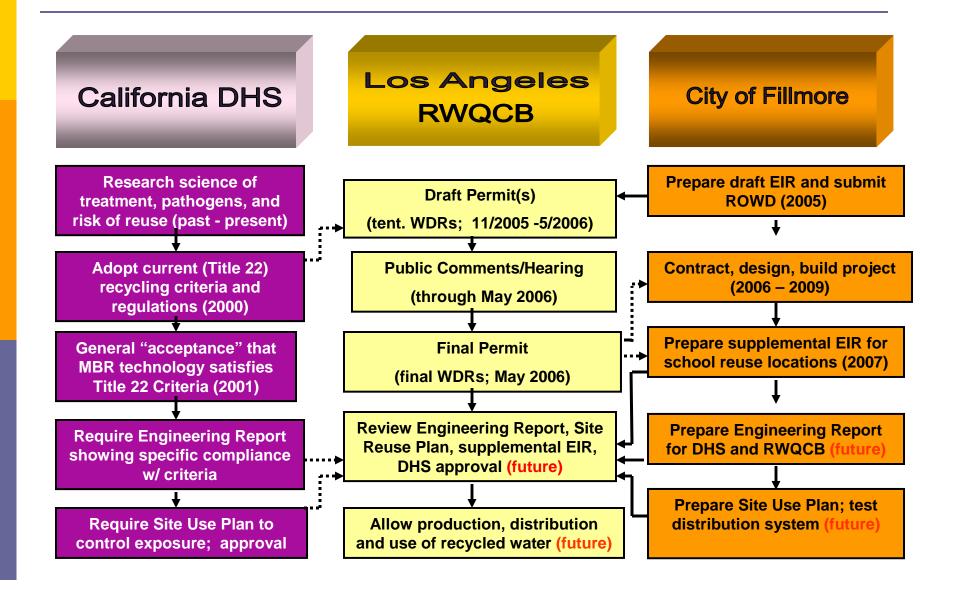
Present qualitative **risk evaluation** findings to the School Board.


Regulatory Authority Three Key Agencies

California DHS

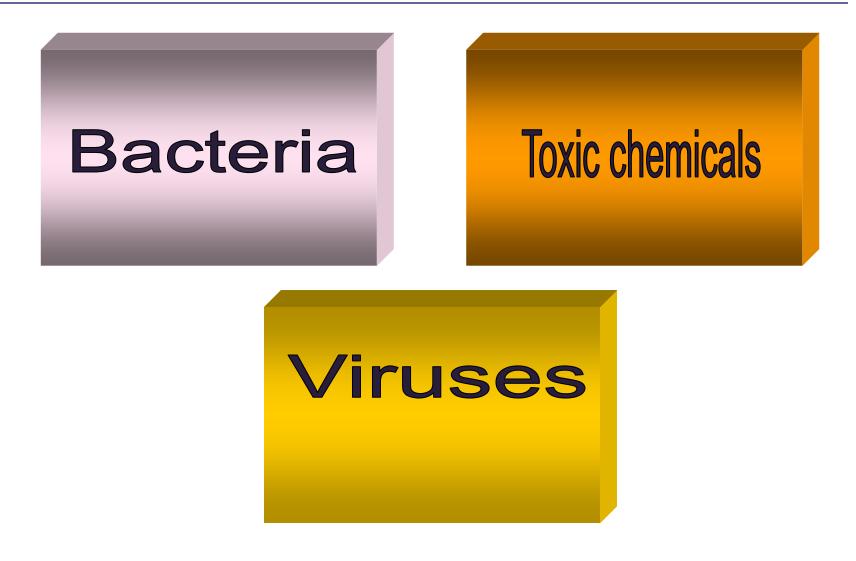

City of Fillmore

Los Angeles RWQCB


Regulatory Process - Functions Criteria, Requirements, and Controls are Key

Regulatory Process – Future agency controls Site-specific regulatory and operational controls

Regulatory Process - Overview



Generic Risk Assessment Process Elements

Risk assessment requires four elements:

- Hazard Identification. Identifying microbial pathogens or chemical contaminants that can be transmitted by recycled water.
- (2) <u>Dose-Response Assessment</u>. Determine relationship between ingested dose and effect on health (dose – response curve; probability of effect).
- (3) **Exposure Assessment**. Estimating the amount and duration of exposure to pathogens and chemicals.
- (4) <u>Risk Characterization</u>. Calculate risk of infection or effect based on exposure and dose-response; compare to "acceptable" risk level (i.e., 1 in 10,000/yr)

Qualitative Risk Evaluation Hazard Identification - Candidates

Qualitative Risk Evaluation Hazard Identification

Qualitative hazard evaluation:

- (1) **<u>Bacteria</u>**. Assume treatment renders effluent "essentially" -- but not absolutely – pathogen free.
- (2) <u>Viruses</u>. Assume treatment renders effluent
 "essentially" but not absolutely pathogen free.
- (3) **Toxic chemicals**. Assume treatment achieves drinking water standards (per WDRs); no hazard.
- (4) <u>Other parameters</u>. Assume no hazard due to treatment efficiency (e.g., protozoa; 2 – 15 microns) and minimal health concerns (e.g., odors, nitrates, etc.)

Dose response assessment - Bacteria

- **Qualitative dose-response evaluation:**
 - (1) <u>Types</u>. Many bacterial pathogens. Size range 0.2 to 10 microns
 - (2) <u>Infectious Dose.</u> In theory 1. In practice, scientific studies show wide variability: <10 to > million.
 - (3) <u>Response</u>. Many responses (gastroenteritis, fever, respiratory).
 - (4) <u>Variables.</u> Individual susceptibility. Infectious dose hard to determine

Dose response assessment - Viruses

- **Qualitative dose-response evaluation:**
 - (1) **Types**. Many viral pathogens. Size range 0.01 to 0.3 microns
 - (2) <u>Infectious Dose.</u> In theory 1. In practice, scientific studies show variability: 1 to > 10.
 - (3) <u>Response</u>. Many responses (fever, hepatitis, respiratory, etc.).
 - (4) <u>Variables.</u> Individual susceptibility. Infectious dose harder to determine.

Exposure assessment – Viruses and Bacteria

Multiple barriers to exposure:

- (1) <u>**Treatment criteria</u>**. Title 22 and WDRs limit E.coli indicator bacteria and turbidity to "safe" levels; tertiary treatment at 5 log (99.999%) pathogen removal.</u>
- (2) <u>Site Use controls</u>. Title 22 and WDRs prescribe site Use Controls and contingencies to prevent exposure .
- (3) <u>Monitoring and testing</u>. Water quality; treatment
 O&M and fail safe diversion plans; site use inspections.
- (4) <u>Variables.</u> Influent quality variability; treatment process upset; site use controls upset; indicator parameter adequacy (?) for all possible pathogens.

Risk characterization – Viruses and Bacteria

Risk summary:

- (1) <u>Hazard Identification</u>. DHS considers tertiary treated wastewater to be "essentially" pathogen free.
- (2) **Dose response.** Dose response curves are difficult to determine, and vary by study estimate and organism.
- (3) **Exposure assessment**. Title 22 and WDRs prescribe criteria and controls to prevent exposure. Exposure to an infectious dose is very unlikely. No known cases.
- (4) <u>Risk of Infection.</u> Generally, equivalent to the "acceptable" risk for drinking water (<1 in 10,000/year), based on *quantification* of risk for a golf course recycled spray irrigation project (Tanaka, et al.,1998).

Risk reduction beyond conventional standards

Additional risk reduction elements:

- (1) **<u>State of the art technology</u>**. The proposed MBR technology is "state-of-the-art" tertiary treatment.
- (2) <u>Stringent turbidity criteria</u>. The "ultra-filtration" membrane technology (0.04 micron pore size) is required (and able) to meet Title 22 turbidity levels 10x more stringent than "conventional" tertiary treatment.
- (3) <u>Drinking water standards for toxics</u>. The WDRs effluent limits for toxic chemical priority pollutants are set at drinking water standards.
- (4) **Subsurface Irrigation.** SDI precludes exposure, except under upset scenario (e.g., ponding, spray drift)

Uncertainty Issues Worst case concerns

What factors could lead to health concerns?

- (1) <u>Treatment Process Upset</u>. Treatment variability or upset yielding undetected pathogen release to pipe.
- (2) Indicator Parameter Inadequacy. Does the E. coli indicator parameter test account for all pathogens?
- (3) <u>Site Use Upset.</u> Irrigation system use variability or upset, yielding unexpected exposure (ingestion).
- (4) **No Quantified Risk Assessment.** A quantitative risk assessment was not performed for the Fillmore SDI proposal (beyond scope); nor was one available for an identical project.

Basis for Going Forward

Support for no significant risk conclusion

Confidence in:

- (1) **<u>DHS Recycled Water Criteria</u>**. Title 22 criteria were developed by DHS in charge of health protection.
- (2) <u>Regulatory Process</u>. DHS, RWQCB, and the City of Fillmore are directly involved.
- (3) <u>Treatment Process</u>. Engineering firm managing the project has experience – and a stake in ensuring no nuisance or infection results from the project.
- (4) <u>Site use controls</u>. To be implemented for the distribution system by both FUSD and the City WRP contractor (per Boyle Engineering).

Recommendations

Other possible considerations

If concerns persist, possibly consider:

- (1) **Subsurface irrigation only**. Eliminating potential exposure concerns from spray irrigation.
- (2) **Research similar projects**. The scope of services did not include identification or detailed assessment of any identical -- or substantially similar -- reuse projects.
- (3) <u>Additional analytical data</u>. Microbiological results for MBR reuse system end-of-pipe effluent.
- (4) <u>Track agency actions.</u> Future regulatory actions, approvals and control of the recycling proposal will involve DHS, RWQCB, and the City of Fillmore.

Questions?